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Abstract 
This paper describes the specification-based testing 

and analysis tools, and associated processes, that were 
used to develop and certify safety-critical avionics 
systems in an industrial organization. These tools 
comprise an integrated development environment 
supporting specification acquisition and analysis, 
requirement-based automatic test vector generation, test 
coverage analysis, test driver generation, and test results 
analysis. The paper describes the specification model, 
method, development environment, and tool qualification 
approach. The capabilities of the automatic test 
generator are compared with foundational concepts and 
related  testing strategies and mechanisms. 

1. Introduction 

This paper describes the T-VEC (Test VECtor) 
system that was used to develop and certify two avionics 
systems. These certifications were conducted by the 
Federal Aviation Administration (FAA) based on  
DO-178A - Software Considerations in Airborne Systems 
and Equipment Certification [24] (now DO-178B). These 
certification guidelines emphasize a software engineering 
approach, where requirement-based testing and analysis 
are key to supporting the assurance arguments required 
for certification.  

T-VEC is an integrated development environment 
and associated specification and verification method [3; 
4]. One of the key tools of the T-VEC system is an 
automatic test vector generator; it determines test inputs, 
expected outputs, and a mapping of each test to the 
associated requirement, directly from formal 
specifications. It has been documented that testing can 
account for 40% to 70% of the development effort [5; 
14]. Testing a critical system can require tens or 
hundreds of thousands of test cases. A test vector 
generator that determines expected output values can 
reduce the testing effort as compared to a test case 

generator, where the expected output values must be 
determined manually. 

1.1 T-VEC overview 

Figure 1 shows the T-VEC Environment. It supports 
a process that produces a hierarchy of requirement and 
design specifications. Graphical editors are employed in 
the acquisition of different aspects of the specification. 
The T-VEC compiler checks syntactic and semantic 
information during the compilation of the requirement 
specification. The test vector generator derives test 
vectors from the system knowledge. Its automatic 
coverage analyzer ensures that every unique requirement 
specification is exercised by at least one test vector.  
T-VEC also automatically generates test drivers and 
documentation, relieving engineers from such tedious 
tasks. Finally, T-VEC provides project and configuration 
management tools specifically developed to support the 
method. 

1.2 T-VEC in operation 

T-VEC is operational today. It has been used to 
develop flight-critical, real-time, embedded systems 
since 1989. As a result of this experience, T-VEC 
evolved and was tailored to aid engineers in applying 
formal specifications by representing them using 
graphics with textual annotations. T-VEC was applied to 
a portion (approximately 50 subsystems) of a Traffic and 
Collision Avoidance System (TCAS), which was FAA-
certified in March of 1990. T-VEC was applied to the 
entire MD90 (McDonnell Douglas) Electrical Power 
System Variable Speed Constant Frequency (VSCF) 
system that was  
FAA-certified in January of 1995. T-VEC was also used 
in the development of component libraries for a family of 
avionics display systems. T-VEC was also qualified in 
support of the certification requirements (see Section 5). 

 

Copyright (c) 1996 Institute of Electrical and 
Electronics Engineers. Reprinted, with permission, from 
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Figure 1. T-VEC environment 

1.3 Organization of paper 

Section 2 describes how T-VEC supports the 
development of a critical system. Section 3 provides an 
overview of the T-VEC specification model to support 
the explanation of the test generation mechanisms. 
Section 4 describes the T-VEC test vector generator, 
compares it to other related test data generators, and 
identifies the unique characteristics of the tool. Section 5 
discusses the qualification of tools used in critical system 
development. Section 6 provides a summary of T-VEC 
capabilities and benefits. 

2. T-VEC’s role in critical system 
development 

Leveson argues that an overall systems approach is 
required for developing a safety-critical application [20]. 
Such an approach can potentially provide high assurance. 
However, the infeasibility of quantifying the reliability 
and assurance levels of software is described by Miller, 
Butler, and Finelli [6; 21]. This section describes a 
framework that is used to explain T-VEC’s role in 
supporting a high assurance software development 
process. 

To certify a system based on DO-178B guidelines, 
system developers are permitted to define their own 
software life-cycle processes. The guidelines identify 

some basic types of software development artifacts that 
must be produced. DO-178B also defines assessment 
criteria for these software artifacts to ensure that the 
development results in a safe system.  

DO-178B guidelines emphasize the verification 
process and results as the primary means for providing 
high assurance evidence. Verification is a process to 
ensure that one level of specification complies with 
another. A particular design must satisfy a requirement 
specification, and the implementation must comply with 
the design. Verification relies on a set of complementary 
subprocesses, including testing, analysis, and reviews. 
Testing is the process of exercising a system or system 
component to verify that it satisfies specified 
requirements and to detect errors. Analysis provides a 
repeatable means for producing evidence of correctness, 
and reviews provide a qualitative assessment of 
correctness [24]. 

Formal methods are formal techniques that support 
verification and can be used to ensure that the captured 
specifications are consistent and complete, and satisfy 
critical system properties. Formal specification 
languages, methods, and tool systems, like Z [27], VDM 
[19], and PVS [11], continue to expand in scope and 
capabilities. As the tools and techniques underlying 
formal methods mature, they will most likely play a 
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larger role in the development of critical systems because 
they help identify specification errors. 

Table 1 provides a framework that relates the primary 
assurance techniques of verification with the general 
types of software artifacts. The Technique/Process 
column lists some assurance techniques or processes that 
can be used to produce and assess artifacts during 
development. Under Software Development Artifacts, an 
“x” is used if a technique is strongly associated with the 
artifact; an “o” means that these artifacts may be weakly 
associated with the technique or process, depending on 
the specific development method (e.g., modeling and 
simulation are typically used to gain a better 
understanding of the requirements, but could be used to 
help make design choices). The Comments column gives 
a brief description of the assurance technique or process. 
Rushby describes how several of these techniques 
support verification [25]. 

Table 1 also indicates those assurance techniques that 
are supported by the T-VEC tools and method. Figure 2 
highlights the relationships (in shaded boxes) between 
the tools and the artifacts. 

T-VEC can symbolically execute specifications, 
allowing users to execute scenarios to help users assess a 
captured requirement specification. The test vector 
generation mechanism also performs typechecking and 
consistency checking of requirement specifications (see 
Section 4). 

The T-VEC compiler ensures that the requirement 
specifications are well-formed, consistent, and complete 
(with respect to T-VEC’s specification model [see 
Section 3]). The test vector generator automates most of 
the testing process, and the coverage analyzer ensures 
that there is at least one test for every requirement. A 
manual analysis process is used to verify that traceability 
linkages are completely and consistently mapped from 
each requirement specification to some design 
specification and associated implementation construct. A 
check is also made to verify that every implementation 
construct is associated with a requirement specification. 
Finally, T-VEC has been integrated with several test 
execution environments; test are downloaded to the 
target hardware, executed, and the results are uploaded 
and analyzed automatically to verify that the 
implementation passes every test. 

 

Table 1. Mapping assurance techniques to software artifacts 

 
Legend: x = strong correlation with artifact  o = weak correlation with artifact 



     

 
Figure 2. Software development artifacts and relationships to support high assurance 

3. T-VEC specification model 

This section focuses on the specification model 
concepts that are relevant to test vector generation. 

3.1 Hierarchical specification model 

There are two main principles that characterize the 
formalization of T-VEC’s hierarchical specification 
process [8]: 

• Every system is a subsystem of some higher 
level system (i.e., a parent system) [2; 9]. 

• Input and output objects of any given subsystem 
are defined a priori by its parent system. 

The hierarchical specification model is a means for 
managing complexity in system development. It is the 
basis for defining the hierarchical relationships between 
levels of abstraction. The model supports functional 
decomposition and the specification of components 
developed using object-based concepts.1 

Figure 3 provides an abstract representation of  
T-VEC’s hierarchical specification process. 

                                                             
1A set of reusable T–VEC class hierarchies (approximately 50 

subsystems in 8 classes (e.g., Digital IO, Analog IO, Brightness 
Control, Builtin Test) were developed and reused in 5 different display 
products. This form of reuse, where the specification, design, test, 
documentation, reviews and analysis results, and code are all reused 
could have significant cost saving when applied to critical systems. 
 

 
Figure 3. Hierarchical specification process 

An architecture is the specification of the 
organization of “black boxes” (e.g., task, procedure, 
function, or a component that encapsulates objects) and 
associated input and output interfaces. Subsystem is the 
T-VEC term used for any type of “black box.” A new 
lower-level architecture is designed to satisfy the 
allocated system requirements. Its new subsystems and 
data interfaces imply the need for a new set of derived 
requirements (i.e., requirements derived from design 
choices associated with the new subsystems and their 
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interfaces. Figure 4 shows an example of the hierarchical 
specification process.  

For each subsystem in a parent architecture, there 
must be functional requirement specifications for each 
output. Consider the Display Task in Figure 4. For each 
functional requirement not directly implemented at a 
given level of the system, a data transformation sequence 
must be specified representing its functional design. A 
data transformation sequence identifies ordered 
functional mappings from the inputs to the output (i.e., 
the inputs and output of Display Task). For example, the 
input object HW Input is transformed by an IO mapping 
to some intermediate form before Hysteresis and Filter 
processing are performed resulting in Altitude. When a 
new lower-level architecture is designed, each data 
transformation is represented by a subsystem in that 
architecture. The program calling structure for Display 
Task identifies the calling order, from left to right, of the 
subsystems (procedures) in the new architecture. The 
same specification process applies to each new 
subsystem. 

3.2 Requirement specification model 

T-VEC’s requirement specification model provides 
the basis for identifying and organizing the functional 
requirements for a subsystem. Busser and Blackburn 
define the formal definition of a functional requirement 
as the basis for the requirement specification model [9, 
2]. Definition: 

the set of all functional relationships, for all 
points of temporal relevance, for a given 
output object 

The functional requirements model can be related to 
the precondition and postcondition model of Hoare [16], 
as shown in Figure 5. A relevance predicate groups all 
the precondition constraints associated with each 
functional relationship. Each relevance predicate 
characterizes the data and temporal constraints on the 
objects of the input space. A functional relationship 
characterizes an object of the output space as a function 
of the inputs. 

The following provides a brief summary of the 
specification language supported by the system 
knowledge compiler and test vector generator. The 
specification of functional requirements is represented 
using four types of diagrams. Figures 6 and 7 show an 
example based on the Filter subsystem shown in the New 
Architecture of Figure 4. 

Data structure diagrams are used to specify the input 
and output objects of a given subsystem. Each leaf node 
of a possibly complex data structure must minimally 
specify the type, domain constraint, and data 

representation of the object in a corresponding textual 
annotation. The objects specified in a given diagram are 
those that make up the subsystem interface design of the 
parent architecture. For example, the inputs and output 
shown in the top-level functional requirement diagram 
are consistent with the interfaces to the Filter subsystem 
shown in the New Architecture (Figure 4). T-VEC 
supports the base types: Boolean, enumeration, unsigned, 
integer, float, and string. The user can define arrays, 
records, and user-defined types. In addition, objects can 
be bit packed and accessed as record structures. 

Functional requirement diagrams represent a 
hierarchy of functional relationships and constraints. The 
top level, or context view, abstractly represents the 
semantics of the parent’s architecture diagram for that 
subsystem. These diagrams show the input-to-output 
mapping for each functional relationship for each output 
of the subsystem and provide a reference to a 
corresponding relevance predicate. Each functional 
relationship specification must include a traceability 
reference to the system requirement from which it was 
derived and the implementation procedure where it is or 
must be implemented. 

Functional relationships expressions are specified in 
terms of primitive operators: bit operations, assignment, 
addition, subtraction, multiplication, division, 
exponentiation, absolute value, log, and trigonometric 
functions. Subsystems can be treated like functions, even 
if the subsystem specifies the requirements for complex 
objects; therefore, subsystems can be referenced within a 
functional relationship or in a relevance predicate. A 
functional relationship can also be expressed in terms of 
a forall operator when specifying a relationship 
governing some or all elements of a specified range of 
array elements. 

Logic structure diagrams can be used to specify 
parameterized predicates that define constraints on the 
input space. Logic structures can be referenced anywhere 
within a relevance predicate of a subsystem and are 
inherited by all lower-level children subsystems in the 
specification hierarchy. Logic structures can be used for 
multiple sets of objects within a subsystem. Figure 7 
shows logic structures that are referenced in relevance 
predicate tables. The logic structure is interpreted as 
follows: the predicate Coast is true if the predicates Input 
Suspect and History Valid are both true (conjunction); the 
predicate Input Suspect is true if either predicate Input 
Bad or Input Unknown is true (disjunction - inclusive or). 
A predicate expression can be defined using primitive 
operators, relational operators (i.e., =, ≤, <, ≥, >, and 
NOT) or as a function reference to a subsystem. 

 

 



     

 
Figure 4. Hierarchical specification example 

 
Figure 5. Relationship between T-VEC 
requirement specification model and 
precondition/postcondition model 

Relevance predicate tables associate logic structures 
with functional relationships A relevance predicate table 
must exist for each functional requirement diagram. 

Logic structure references are on the left side of the 
double bar of a relevance predicate table and functional 
relationships are on the right. Simple predicate 
expressions can be specified directly in the relevance 
predicate table. Figure 7 provides an interpretation. 
Blank table entries under predicates indicate a don’t care 
situation. 

4. Automatic test vector generation 

This section focuses on the mechanism for 
specification-based test generation. Gourlay’s [15] 
mathematical framework for testing confirms the need 
for specification-based testing. However, based on a 
survey of 12 industrial applications of formal methods, 
there were no tools used to automatically generate tests 
from the specifications that were developed and analyzed 
in support of the system verifications [10]. Such tools are 
valuable in reducing manual effort and preventing 
manual errors in the testing process, while freeing 
developers to focus on the more complex task of 
specification development and analysis.  

Specification-based testing provides confidence that a 
program implements the requirements for some system if 
every test, derived from the specifications, executes 
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correctly in the target environment (i.e., computes the 
appropriate expected results). The actual confidence is 
based on the adequacy of the tests to reveal errors in an 
implementation that contains faults. Test adequacy is 
based on the test selection strategies and the 
completeness of the tests with respect to the 
specification. In T-VEC, test set completeness is 
determined by checking that all specified requirements 

have at least one test vector. A test vector includes the 
test input values, the expected output value, and a 
reference to the associated requirement specification. The 
test coverage analyzer checks the requirement reference 
in the test set against the set of all requirement 
specifications for a subsystem. (see Test coverage 
analyzer in Figure 2).  

 
Figure 6. Graphic representation of a functional requirement specification 

 
Figure 7. Graphic representation of a relevance predicate 

Before describing the test selection strategies and 
associated test generation mechanism, some verification 

process constraints and assumptions need to be stated 
because testing alone cannot be used to assess the 
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completeness or consistency between a specification and 
an implementation. 

4.1 Verification constraints and assumptions 

The specification is assumed to be correct, although 
as discussed later in this section, the test vector generator 
can detect inconsistencies in the specification. To provide 
assurance that the implementation is complete and 
consistent with respect to the specification, the following 
manual review processes were used to support the FAA 
certifications in which T-VEC was used: 

• Every functional relationship (FR) in the 
specification must be mapped to an output 
assignment in the implementation, and there 
must be a 1-to-1 mapping between the relevance 
predicate constraints of the FR and the 
conditions on the program path to the 
assignment. 

• For every function/procedure call in a program, 
there must be a consistent interface mapping to 
a “lower-level” subsystem specification (this 
allows the same mechanisms to be used for all 
levels of the software system). 

It is assumed that an implementor follows these rules 
when coding from a formal specification. It is also 
assumed that there is a strong correlation between the 
relevance predicates and path controls guarding the 
output assignments of a program even if a human fails to 
detect an inconsistency between the specification and 
implementation. 

4.2 Test selection strategy 

T-VEC is as an oracle/error-based testing 
mechanism based on Richardson’s et. al [23] 
classification of specification-based testing approaches; 
such approaches extend implementation-based testing 
techniques to formal specifications. This subsection 
relates implementation-based testing concepts and 
strategies to the T-VEC test selection mechanisms.  

Using Zeil’s [31] modified version of Howden’s [17] 
definitions: a computation error occurs when the correct 
path through the program is taken, but the output is 
incorrect due to faults in the computation along the path. 
A domain error occurs when an incorrect output is 
generated due to executing the wrong path through a 
program. Howden further categorized domain errors as 
path selection errors or missing path errors [17]. 
Specification-based testing can detect missing path 
errors; however, in general, we assume that missing and 
extraneous paths in the code will be detected during a 
manual review process. T-VEC mechanisms can detect 
both domain and computation errors.  

Selecting test data to reveal domain errors. Based on 
the assumption that there is a strong correlation between 
predicates in the specification and path control conditions 
in the program, the test selection strategies are discussed 
in terms of domain testing theory concepts. White and 
Cohen [29] proposed domain testing theory as a strategy 
for selecting test points to reveal domain errors. It is 
based on the premise that if there is no coincidental 
correctness, then test cases that localize the boundaries of 
domains with arbitrarily high precision are sufficient to 
test all the points in the domain.  

T-VEC selects test data for subdomains of an input 
space based on the constraints of a relevance predicate. 
As shown in Figure 8, a relevance predicate is internally 
represented in disjunctive normal form (i.e., disjunctions 
of conjunctions). A set of test vectors is generated for 
each disjunction of a relevance predicate (referred to as 
the domain convergence paths [DCP]). A DCP is 
characterized by a conjunction of predicates for one 
functional relationship. The DCP predicates should map 
to the path conditions in a corresponding program. 

 
Figure 8. Domain convergence path 
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[-100...0] and [0...100]). Intuitively, this specification-
based domain testing mechanism provides confidence 
that every path of the implementation is correct with 
respect to every DCP and functional relationship of a 
subsystem. 

Problem domain test selection heuristics. A heuristic 
mechanism was added to the test generator to control the 
order of the selection of borders of subdomain 
boundaries based on three categories of predicates. By 
distinguishing the predicate types, the test points are 
selected on boundaries that are more strongly correlated 
to the problem domain boundaries. Predicates in the DCP 
are categorized by clause type. The clause types include:  

• ground term: an input variable used in a relation 
with a constant 

• ground clause: a variable and/or function used 
in a relation with a constant 

• clause: a relation between any combination of 
two or more input variables and/or functions 

Ground terms relate an input variable to a constant; 
this constant is likely to have significant meaning in the 
problem domain. For example, in TCAS, if an aircraft is 
above 10,000 feet (ground term), and if an aircraft is 
within 2,500 feet of altitude of your own aircraft altitude 
(ground clause), it is a candidate for tracking by TCAS. 
Therefore, ground terms are used to initialize the 
subdomain for a DCP before a ground clause or clause is 
used to constrain the subdomain.2 

Selecting test data to reveal computation errors. 
Some inputs to the functional relationship are not 
constrained by the DCP predicates. For each test point 
derived from DCP predicates, there are additional test 
points derived for unconstrained inputs not referenced in 
the DCP based on all domain boundary value 
combinations (i.e., low bound and high bound for 
numeric objects, sets for enumerated variable, etc.). By 
selecting the extreme value combinations, there is a 
possibility to detect computation errors in the output 
calculation. This test selection strategy is used to detect 
computation errors or show that unconstrained inputs do 
not affect the output for a program path.  

Computing the expected output. The functional 
relationship is applied to each input value set to 
determine the expected output value. The value is 
                                                             

2The TCAS Collision Avoidance Logic, developed by two 
independent organizations, is a pseudo-code specification that TCAS 
system developers must implement in their system. These specifications 
have evolved over the last 20 years. A change was made between 
version 5 and version 6 that specified unreachable code. To test the 
code, the specifications were reverse-engineered into T-VEC 
specifications. T-VEC’s use of domain boundaries helped identify a 
complex combination of constraints that were inconsistent in version 6. 
Values inside the boundaries would not have detected this 
inconsistency. 

checked against the subrange specification of the output 
variable, if the value is within the specified range,  a test 
vector is produced that includes the inputs, input types 
and representation information, the expected output with 
its type information, and the requirement DCP.  

Specification inconsistencies are identified when the 
test coverage analyzer cannot find a complete mapping 
between the generated test vectors and the set of all DCP 
combinations in the source specification for each 
subsystem. Specification inconsistencies result when the 
test generator does not produce test vectors; this occurs 
when: 

• The convergence process cannot determine an 
input subdomain for a DCP because there is an 
inconsistent set of predicates in the DCP. 

• The expected output value, computed using the 
functional relationship with the input test 
values,  is not correct with respect to its 
subrange specification. 

There is an interactive specification analysis tool 
(“debugger”) that can be used to determine the source of 
a specification inconsistency. 

4.3 Relationship to other strategies 

Domain testing strategies have focused on programs 
rather than specifications, but the foundational concepts 
can be related to specification-based test selection. The 
initial domain testing strategy proposals [12; 29], had 
some limitations and flawed arguments as described by 
Zeil [31]. Zeil et al. [30] describes an extension to 
support nonlinear calculations for linearly independent 
predicate expressions. Zeng and Weyuker [18] describe a 
simplified strategy that reduces the number of test points 
and addresses the limitation of programs with variable 
defined over continuous domains. 



     

In 1990, T-VEC mechanisms [4] supported the 
extension addressed by Zeng and Weyuker [18]: 

• For a discrete input space with open borders 
defined by > and < relational operators, the 
selection of test points is based on the floating 
point representation of the input objects with 
respect to their computed accuracy of the 
calculations used in the predicate expressions. 

and extended Zeil’s et al. [30] contributions to address 
the needs of real-world applications, by supporting: 

• Borders associated with predicate expressions 
that are linearly dependent nonlinear 
inequalities. As is discussed in Afifi et al. [1], 
real-world problems (e.g., TCAS, global 
navigation) contain nonlinear constraints and 
functions. 

As an oracle-based mechanism, T-VEC deviates from 
the implementation-based strategies in one way. 
Implementation-based strategies select test points ON the 
borders (within the subdomain) and OFF the borders in 
an adjacent subdomain. T-VEC selects only ON border 
test points, because it cannot determine the expected 
output for an OFF border test point in an adjacent domain 
based on the current DCP and functional relationship. 
The expected output for an OFF border test point in an 
adjacent subdomain should be covered by another 
relevance predicate of the specification. 

4.4 Relationship to other test generators 

T-VEC is a mechanized instance within a general 
framework for specification-based testing as described by 
Stocks and Carrington [26]. It uses specification 
categories (see Section 4.2) to select test data based on a 
test point selection strategy. Convergence operations, 
based on the specification precondition, are used to 
reduce the input space, and test point heuristics are used 
to select test points.  

Some other test generation systems use functional 
specifications, where a precondition defines constraints 
on the function’s input domain. The characteristics that 
distinguish the systems include: 

• The ability to generate test vectors versus test 
cases 

• The ability to select test data for specifications 
characterized as nonlinear inequalities with 
dependent variables 

• The mechanization of the test generator 

• The test point selection heuristics and 
mechanisms 

Some specification-based test generators produce test 
cases, like the system “T” developed by Poston [22]. Tsai 
et al. describes a test generator for a relational algebra 
specification [28], where the specification precondition is 
limited to a set of linear inequalities. 

Prolog-like engines were used by Busser and 
Blackburn [4], Denney [13], and Bernot et al. [7] to 
automate test generation. In all cases, additional control 
strategies were required to overcome some of the 
limitations of Prolog (i.e., the Horn clause representation, 
typeless language). The executable nature of the 
specification language supports the selection of the test 
input values and the computation of the expected output 
value. 

4.5 Unique characteristics of T-VEC test vector 
generator 

The distinguishing characteristics of T-VEC include:    

• T-VEC generates test vectors for specifications 
characterized by nonlinear inequalities, where 
both sides of the inequality can be expressions 
with dependent variables, rather than being 
limited to linear inequalities with constants. 

• T-VEC generates test vectors involving 
complex structures and arrays for both input and 
output spaces. 

• T-VEC generates test vectors using selection 
heuristics (e.g., limit the number of 
combinations of unconstrained input variable to 
all low-bound, and all high-bound values). 

• T-VEC generates test vectors for a hierarchy of 
specifications, supporting integration testing of 
a high-level subsystem, without regenerating all 
the test vectors for each referenced lower-level 
subsystem. This mechanism precludes the 
combinatorial explosion associated with tests 
generated from the combination of constraints in 
a hierarchy of subsystems, while ensuring 
complete coverage when following a bottom-up 
testing strategy. 

The concept of hierarchical specification is 
fundamental to the scalability of both the specification 
method and the associated verification process.  T-VEC 
promotes a hierarchy of specifications to manage 
complexity, changeability, and reuse, as well as 
scalability. 

4.6 Automated test process 

After completing the specification and coding 
processes, developers submit the subsystem for testing. 
T-VEC executes the following procedure automatically 
relieving engineers from many manual tasks and 



     

reducing the possibility of manual error (refer to Figure 
2): 

• T-VEC checks and compiles, as needed, the 
system knowledge to ensure that it is up-to-date 
with the graphically entered specification. 

• If it is error free, T-VEC generates test vectors 
from the system knowledge. 

• T-VEC checks to ensure that there is at least one 
test vector for every requirement specification 
DCP. 

• If there is full test coverage, T-VEC generates 
and submits a test driver to the target hardware. 

• The actual outputs (associated with the test sets) 
are automatically uploaded from the target test 
environment and compared to the expected 
outputs (from the test vectors). 

4.7 Test vector generation example 

This section illustrates the mechanisms of the test 
vector generator using an example specification 
fragment. Table 2 shows an example of a relevance 
predicate. Clause types are identified in the second 
column. 

Table 2. Relevance predicate example 

 
 

Table 3 provides a way to view the subranges on the 
inputs during the domain convergence process. The steps 
of the convergence process are numbered to support the 
following discussion of the process. After every 
operation, there is a propagation step that is used to 
ensure that all constraints are still satisfied. If any 
constraint cannot be satisfied, then the specification is 
inconsistent. 

• Step 0 shows the initial domain for each 
variable.   

• Step 1 limits the domain based on all ground 
terms to ensure that the selected test points are 
near a subdomain boundary.  

• Step 2 limits the domain based on ground 
clauses. To satisfy the condition x + y ≥ 6, 

the subrange of y must be modified. To satisfy 
the constraint sin(z) ≥ 0.5 there is a 
change of the lower bound of z.   

• Step 3 limits the domain based on all clauses; 
there is no effect because the subrange of  
x - y, which is [-5...9], contains a point that 
satisfies the constraint. 

• At Step 4, when the effects of propagation are 
stable, T-VEC selects a test point at the domain 
boundaries. On the first pass, the low bound 
values of the variables’ domains are selected. 
This process is repeated for the high bounds of 
the inputs. Depending on the test selection 
heuristic mode, one or all values of enumerated 
type objects are selected, each producing a 
unique test vector. 

• At Step 5, the constraints on the converged 
subdomains must be propagated after each test 
point is selected.   

• At Step 6, once all of the propagation is stable, 
another test point is selected. 

This process continues until test points have been 
selected for all the inputs in the constraint.  The inputs 
are then used to compute the expected output for the 
output variable. 

Detecting specification inconsistencies. This test 
vector generation mechanism also detects specification 
inconsistencies; for example, suppose that constraint  
x - y ≤ z was x * y ≤ z. There would not be a 
solution to the problem, because x * y  would have a 
subrange of [5...50] after Step 4, which could never 
satisfy the subrange for z. 

5. Tool system qualification 

Tools can help in the development of critical systems, 
but tool qualification is required by most certification 
authorities and defense agencies. Tool qualification is 
required by DO-178B when tools are used to eliminate, 
reduce, or automate aspects of the development process. 
The objective of qualification is to ensure that the tool 
provides confidence at least equivalent to that of the 
process(es) that has been reduced or automated. 

T-VEC was subjected to qualification for two TCAS 
releases as required by the FAA to support the 
certification. The qualification process was used to 
reverify the system when it was ported from the Sun™ 
386i to the Sun™ SPARC architecture running a new 
operating system. 



     

Table 3. Domain convergence subrange trace 

T-VEC was qualified to demonstrate that valid test 
vectors are reliably generated, satisfying every 
disjunction of a relevance predicate for every functional 
relationship of a given specification. The T-VEC 
qualification process required verification of the system 
knowledge compiler, test vector generator, coverage 
analyzer, and test driver generators. 

To verify the system knowledge compiler, several 
subsystems were specified, and manual analysis was 
performed to show that the generated results where 
consistent and complete with the expected results. There 
was also a coverage analysis activity which demonstrated 
that all classes of specification data types, constructs, and 
hierarchical relationships were included in the test 
specifications. Similar verification processes were 
performed for the coverage analyzer and test driver 
generators. 

The verification of the test vector generator was much 
more extensive. The verification activities for the TCAS 
certification (i.e., the first release of T-VEC) were based 
on traditional verification and coverage analysis 
processes. All specification constructs for all data types 
were tested using domain testing principles. In addition, 
all combinations of hierarchical specification 
relationships were also tested and checked manually.  

For the second and third releases, T-VEC was used to 
test itself. Several unique specifications were created 
using the T-VEC specification language. T-VEC’s 
inference engine is based on Prolog-like semantics; 
therefore, every operator of the language is a predicate. 
This unique approach involved specifying the output of 
each functional relationship as a constant or bound input 
variable, representing the expected output. Therefore, 
when the test vector generator computed the actual 
output for a functional relationship, the final operation 
was an equality predicate that checked the computed 
output with the expected output. Manual coverage 
analysis techniques were still used to show that all 

combinations of specification constructs and data types 
were tested to support the verification process. 

6. Summary 

This paper has described a software engineering 
approach to critical system development that has been 
used in an industrial engineering organization. 
Automated tools played a fundamental role in supporting 
the formal process. The automated testing process 
relieves engineers from many manual tasks and reduces 
the possibility of manual error. The use of graphics was 
key to making a formal specification approach usable by 
typical engineers in industrial organizations. It helped 
them focus on each aspect of the specification 
individually, using one type of graphic and annotation. 
The developers relied on the tools to integrate the views. 
In addition, customers and reviewers, like the FAA, were 
able to understand the notations and processes with 
minimal training. 

The automatic generation of test vectors and 
automated coverage analysis provide a highly automated 
verification process to support critical system 
development with several benefits. T-VEC significantly 
reduces the verification cost by eliminating most of the 
manual testing effort. A test vector generator that 
produces expected outputs reduces the test time and 
effort as compared to a test case generator, where the 
expected output must be determined manually. From a 
customer or FAA-certifier perspective, the T-VEC 
method and automation make the development process 
very systematic. When the process is understood, it is 
easy to determine the level of completion and compliance 
with the DO-178B guidelines for any level of a critical 
system.  

The productivity benefits are best expressed in terms 
of the customer’s expectation. On the last release of the 
MD90 VSCF, there were 10 of the 73 subsystems 
impacted resulting in 602 lines of code changed in 10 
Ada packages. The prime contractor estimated the task at 



     

6 months, based on software development efforts prior to 
this program. The specification, implementation and 
verification efforts were reduced to 4.5 weeks. The 
primary reason for the reduction in time and effort was 
because the test generation and execution were 
performed automatically. Although the actual data is 
proprietary, in all of the T-VEC releases to the prime 
contractor and customer, no defects have been found in 
the software. 
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